메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mustapha Deji Dere (Gwangju Institute of Science and Technology) Jo Ji-hun (Gwangju Institute of Science and Technology) Boreom Lee (Gwangju Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
337 - 341 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning resurgence ushered in the application of pattern recognition algorithms in high-impact research fields with impressive accuracy. In addition, deep neural networks (DNN) have recently been used to classify gestures for rehabilitation device control utilizing raw electromyography data. However, the computational resources required by a convolution neural network (CNN) are a constraint that often limits deployment to embedded devices for real-time inference. An optimized edge adaptive convolutional neural network using a short-time Fourier transform (STFT) spectrogram input was proposed in this study. The model"s classification accuracy was evaluated offline and on-device for inter-subject accuracy. Furthermore, an adaptive weight update approach was implemented to improve inference model accuracy due to degradation. The proposed model and optimization technique achieved offline accuracy of 92.19 % and 94.29 % for the raw and STFT input, respectively. However, the on-device accuracy for raw and STFT input to the model was 82.26 % and 85.19 %, respectively. On the other hand, the adaptive model update increased the respective accuracy by an average of 7% on-device. Finally, our study demonstrates the deployment of DNN on-device for real-time gesture classification inference.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTAL RESULTS AND DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0