메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kosei Tamura (Kyushu Institute of Technology) Tohru Kamiya (Kyushu Institute of Technology) Masafumi Oda (Kyushu Dental University) Yasuhiro Morimoto (Kyushu Dental University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
570 - 573 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Root resorption is a pathological condition which is characterized by the loss of the tooth root. Root resorption is not painful in its early stages. As a result, many people who are potentially affected and the condition are often left untreated until it is detected during regular check-ups. If detected early, good treatment results can be achieved, whereas failure to treat the condition properly can lead to tooth extraction. However, the root resorption is currently difficult to detect on panoramic radiographs and may be treated as caries after it becomes painful. The aim of this paper is to identify root resorption from panoramic X-ray images using a deep metric learning algorithm. As a loss function for distance learning, it is known that the loss function in angle space is consistent. Therefore, a loss function is defined and trained using the cosine value of the angle between the feature and the center position to improve the discrimination performance. We obtained experimental results based on 150 image sets with 0.80 of accuracy, 0.62 of TPR, 0.19 of FPR and 0.78 of AUC, respectively.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTS
4. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0