메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hirokazu Madokoro (Iwate Prefectural University) Saki Nemoto (Akita Prefectural University) Stephanie Nix (Iwate Prefectural University) Osamu Kiguchi (Akita Prefectural University) Atsushi Suetsugu (Akita Prefectural University) Takeshi Nagayoshi (Akita Prefectural University) Kazuhito Sato (Akita Prefectural University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,527 - 1,532 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Air pollution causes various health problems and diseases. Long-term PM<SUB>2.5</SUB> monitoring and prediction of its occurrence and sources are necessary not only in global areas based on public monitoring stations but also in local areas using cost-effective sensor systems. For this study, we developed a sensor system to achieve simplified and high-frequency PM<SUB>2.5</SUB> measurements. We attempted to learn and to predict local PM<SUB>2.5</SUB> concentrations from observed data using long short-term memory (LSTM) as a dominant time-series feature learning network. For improving learning and prediction accuracy evaluated according to the root mean square error (RMSE), sensor calibration is performed using a higher sensor. Moreover, we strove to reduce RMSE by optimizing its five major parameters. Experimentally obtained results demonstrate that the prediction accuracy is improved gradually after calibration and parameter optimization. As an ablation experiment, five meteorological factors are imported
externally to verify the factors which contribute to reducing RMSE. Results verify the strong effects of local pressure and temperature for training and relative humidity and temperature for testing as validation.

목차

Abstract
1. INTRODUCTION
2. RELATED STUDIES
3. PROPOSED SYSTEM
4. MEASUREMENT EXPERIMENT
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0