메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sumaira Manzoor (Creative Algorithms and Sensor Evolution Laboratory) Kyu-Hyun Sung (Sungkyunkwan University) Yueyuan Zhang (Sungkyunkwan University) Ye-Chan An (Sungkyunkwan University) Tae-Yong Kuc (Creative Algorithms and Sensor Evolution Laboratory)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,539 - 1,545 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Tracking the object(s) of interest in the real world is one of the most salient research areas that has gained widespread attention due to its applications. Although different approaches based on traditional machine learning and modern deep learning have been proposed to tackle the single and multi-object tracking problems, these tasks are still challenging to perform. In our work, we conduct a comparative analysis of eleven object trackers to determine the most robust single object tracker (SOT) and multi-object tracker (MOT). The main contributions of our work are (1) employing nine pre-trained tracking algorithms to carry out the analysis for SOT that include: SiamMask, GOTURN, BOOSTING, MIL, KCF, TLD, MedianFlow, MOSSE, CSRT; (2) investigating MOT by integrating object detection models with object trackers using YOLOv4 combined with DeepSort, and CenterNet coupled with SORT; (3) creating our own testing videos dataset to perform experiments; (4) performing the qualitative analysis based on the visual representation of results by considering nine significant factors that are appearance and illumination variations, speed, accuracy, scale, partial and full-occlusion, report failure, and fast motion. Experimental results demonstrate that SiamMask tracker overcomes most of the environmental challenges for SOT while YOLOv+DeepSort tracker obtains good performance for MOT. However, these trackers are not robust enough to handle full occlusion in real-world scenarios and there is always a trade-off between tracking accuracy and speed.

목차

Abstract
1. INTRODUCTION
2. LITERATURE REVIEW
3. METHODOLOGY: DETECTION AND TRACKING
4. EXPERIMENTS
5. RESULTS & DISCUSSION
6. CONCLUSION AND FUTUREWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0