메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yao Wang (Seoul National University of Science and Technology) Jong-Eun Ha (Seoul National University of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,615 - 1,620 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Although text recognition has significantly evolved over the years, the current models still have huge challenges, especially for irregular text images, such as complex backgrounds, curved text, diverse fonts, distortions, etc. Currently, CNN-based text recognition networks have shown good performance but still face the above challenges. Recently, feature extractor based on transformer has shown excellent advantages for global feature extraction on images. Especially in irregular text images, which can use self-attention to establish the information connection of each part of the image, which can also reduce the influence of the irregular distribution of characters. Therefore, this paper proposes MESTR(Multi-Encoders Scene Text Recognition) that combines a CNN-based[1][2][6] feature extractor and a transformer-based feature extractor. MESTR can extract local and global features of text images at the same time and then integrate global features into local features. During training, we used CTC[6] as guide training in the decoder part, as the compensation training strategy for attentional decoder. Experimental results demonstrate that the proposed MESTR shows competitive results on all seven benchmarks. At the same time, we provide ablation experiments to show the effectiveness of the improved part on the text recognition model.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. PROPOSED METHOD
4. EXPERIMENTAL RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0