메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전현호 (Chungnam National University) 백승민 (Chungnam National University) 백승윤 (Chungnam National University) 홍이수 (TYM R&D Center) 김택진 (TYM R&D Center) 최용 (Rural Development Administration) 김영근 (Rural Development Administration) 이상희 (Rural Development Administration) 김용주 (Chungnam National University)
저널정보
유공압건설기계학회 드라이브·컨트롤 드라이브·컨트롤 Vol.20 No.1
발행연도
2023.3
수록면
16 - 26 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Although the upland field area of Korea is high as 44.8%, the platform optimized for the upland field is insufficient. It is necessary to develop an optimized platform for the upland field because the upland field environment is an irregular environment with many slopes. In addition, due to the characteristic of agricultural operations, the traction power and torque of the platform have to be sufficient. Therefore, in this study, a simulation model that can predict the traction power and driving torque of a crawler-type platform for the upland field was developed and validated using the specifications of the crawler platform. The simulation model was developed using Amesim (19.1, Siemens, Germany). The development of the model was conducted using the specifications of the platform. A measurement system was developed to validate the simulation model. The traction power data of the simulation model was validated with the traction force and vehicle speed. The driving torque data of the simulation model was validated with the torque of the sprocket on the crawler system. As a result of the analysis, the error between measurement and simulation results occurred within 10%, and it was determined that the traction power and driving torque prediction of the crawler platform using this model was possible.

목차

Abstract
1. 서론
2. 재료 및 방법
3. 결과 및 분석
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-550-000428190