메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김기원 (Mokpo National Maritime University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제2호(통권 제227호)
발행연도
2023.2
수록면
69 - 75 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
유한체 산술 연산은 현대 암호학(cryptography)과 오류 정정 부호(error correction codes) 등 다양한 응용에서 중요한 역할을 한다. 본 논문에서는 유한체상에서 몽고메리 곱셈 알고리즘을 사용한 효율적인 유한체 곱셈 알고리즘을 제안한다. 기존의 곱셈기들에서는 AND와 XOR 게이트를 사용하여 구현되었는데, 시간 및 공간 복잡도를 줄이기 위해서 NAND와 NOR 게이트를 사용하는 알고리즘을 제안하였다. 게다가 제안한 알고리즘을 기초로 적은 공간과 낮은 지연시간을 갖는 효율적인 세미-시스톨릭(semi-systolic) 유한체 곱셈기를 제안한다. 제안한 곱셈기는 기존의 곱셈기에 비해 낮은 공간-시간 복잡도(area-time complexity)를 가진다. 기존의 구조들과 비교하면, 제안한 유한체 곱셈기는 공간-시간 복잡도면에서 Chiou 등, Huang 등 및 Kim-Jeon의 곱셈기에 비해 약 71%, 66%, 33%가 감소되었다. 따라서 제안한 곱셈기는 VLSI 구현에 적합하며, 다양한 응용의 기본 구성 요소로 쉽게 적용될 수 있다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Montgomery multiplication onGF(2m)
Ⅲ. Proposed Montgomery Multiplier
Ⅳ. Complexity Analysis
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000427032