메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영석 (청운대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제16권 제1호
발행연도
2023.2
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
시각 피질로부터 영감을 심층 신경망의 일종인 컨벌루션 신경망은 영상 관련 분야에서 이미 인간의 시각처리 능력을 넘어서 다양한 분야에 응용되고 있지만 적대적 공격의 출현으로 모델의 성능이 저하되는 심각한 위험에 노출되어 있다. 또한 적대적 공격에 대응하기 위한 방어 기술은 해당 공격에 효과를 보이지만 다른 종류의 공격에는 취약하다. 적대적 공격에 대응하기 위해서는 적대적 공격이 컨벌루션 신경망 내부에서 어떤 과정을 통하여 성능이 저하되는 지에 대한 분석이 필요하다. 본 연구에서는 신경생리학 분야에서 뉴런의 활동을 측정하기 위한 척도인 개체군 희소성 인덱스를 이용하여 AlexNet과 VGG11 모델의 적대적 공격에 대한 분석을 수행하였다. 수행된 연구를 통하여 적대적 예제에 대한 개체군 희소성 인덱스가 AlexNet에서는 전 연결 층에서 개체군 희소성이 증가하는 현상을 발견할 수 있었으며 이와 같은 동작은 일반적인 신경망의 동작에 반하는 결과로서 적대적 예제가 신경망의 동작에 영향을 미치고 있다는 강력한 증거이며 또한 동일한 실험을 실시한 VGG11에서는 전체 레이어에서 개체군 희소성 인덱스가 전반적으로 감소하여 개체 인식의 성능이 감소되는 활동을 관찰 할 수 있었다. 이와 같은 결과는 신경생리학적 관점에서 뉴런의 활동을 관찰하는 방식을 인공지능 분야에서도 활용하고 분석할 수 있는 방법을 제시하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구들
3. 실험 및 결과 고찰
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-000417452