메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Tae-Wook Kim (Hanbat National University) Gyung-Ho Hwang (Hanbat National University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.19 No.1
발행연도
2021.3
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reinforcement learning is an area of machine learning that studies how an intelligent agent takes actions in a given environment to maximize the cumulative reward. In this paper, we propose a new MAC protocol based on the Q-learning technique of reinforcement learning to improve the performance of the IEEE 802.11 wireless LAN CSMA/CA MAC protocol. Furthermore, the operation of each access point (AP) and station is proposed. The AP adjusts the value of the contention window (CW), which is the range for determining the backoff number of the station, according to the wireless traffic load. The station improves the performance by selecting an optimal backoff number with the lowest packet collision rate and the highest transmission success rate through Q-learning within the CW value transmitted from the AP. The result of the performance evaluation through computer simulations showed that the proposed scheme has a higher throughput than that of the existing CSMA/CA scheme.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORKS
Ⅲ. REINFORCEMENT LEARNING-BASED CSMA/CA MAC PROTOCOL
Ⅳ. SIMULATION RESULTS
Ⅴ. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000406266