메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soong-Hee Lee (Inje University) Jae-Yong Bae (Inje University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.17 No.1
발행연도
2019.3
수록면
8 - 13 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Smart Farming has been regarded as an important application in information and communications technology (ICT) fields. Selecting crops for cultivation at the pre-production stage is critical for agricultural producers’ final profits because overproduction and under-production may result in uncountable losses, and it is necessary to predict crop production to prevent these losses. The ITU-T Recommendation for Smart Farming (Y.4450/Y.2238) defines plan/production consultation service at the preproduction stage; this type of service must trace crop production in a predictive way. Several research papers present that machine learning technology can be applied to predict crop production after related data are learned, but these technologies have little to do with standardized ICT services. This paper clarifies the relationship between agricultural consultation services and predicting crop production. A prediction scheme is proposed, and the results confirm the usability and superiority of machine learning for predicting crop production.

목차

Abstract
I. INTRODUCTION
II. FRAMEWORK OF AGRICULTURAL CONSULTATIONSERVICE
III. PROPOSED PREDICTION SCHEME
IV. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000405441