메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
천범석 (경북대학교) 신용철 (경북대학교) 이태화 (경북대학교 농업토목.생물산업공학부) 김상우 (경북대학교) 임경재 (강원대학교) 정영훈 (경북대학교) 도종원 (한국농어촌공사)
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제64권 제1호
발행연도
2022.1
수록면
39 - 50 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, we suggested the optimal training period for predicting the streamflow using the LSTM (Long Short-Term Memory) model based on thedeep learning and CMIP5 (The fifth phase of the Couple Model Intercomparison Project) future climate scenarios. To validate the model performanceof LSTM, the Jinan-gun (Seongsan-ri) site was selected in this study. We comfirmed that the LSTM-based streamflow was highly comparable to themeasurements during the calibration (2000 to 2002/2014 to 2015) and validation (2003 to 2005/2016 to 2017) periods. Additionally, we compared theLSTM-based streamflow to the SWAT-based output during the calibration (2000∼2015) and validation (2016∼2019) periods. The results supportedthat the LSTM model also performed well in simulating streamflow during the long-term period, although small uncertainties exist. Then theSWAT-based daily streamflow was forecasted using the CMIP5 climate scenario forcing data in 2011∼2100. We tested and determined the optimaltraining period for the LSTM model by comparing the LSTM-/SWAT-based streamflow with various scenarios. Note that the SWAT-based streamflowvalues were assumed as the observation because of no measurements in future (2011∼2100). Our results showed that the LSTM-based streamflow wassimilar to the SWAT-based streamflow when the training data over the 30 years were used. These findings indicated that training periods more than30 years were required to obtain LSTM-based reliable streamflow forecasts using climate change scenarios.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0