메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jinshun Wang (Xi'an Jiaotong University) Qinghang Cai (Xi'an Jiaotong University) Ronghua Chen (Xi'an Jiaotong University) Xinkun Xiao (Xi'an Jiaotong University) Yonglin Li (Xi'an Jiaotong University) Wenxi Tian (Xi'an Jiaotong University) Suizheng Qiu (Xi'an Jiaotong University) G.H. Su (Xi'an Jiaotong University)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제54권 제1호
발행연도
2022.1
수록면
162 - 176 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In Lead-based reactor (LBR) severe accident, the meltdown and migration inside the reactor core will lead to fuel fragment concentration, which may further cause re-criticality and even core disintegration. Accurately predicting the migration and solidification behavior of melt in LBR severe accidents is of prime importance for safety analysis of LBR. In this study, the Moving Particle Semi-implicit (MPS) method is validated and used to simulate the migration and solidification behavior. Two main surface tension models are validated and compared. Meanwhile, the MPS method is validated by the l-plate solidification test. Based on the improved MPS method, the migration and solidification behavior of melt in LBR severe accident was studied furthermore. In the Pb?Bi coolant, the melt flows upward due to density difference. The migration and solidification behavior are greatly affected by the surface tension and viscous resistance varying with enthalpy. The whole movement process can be divided into three stages depending on the change in velocity. The heat transfer of core melt is determined jointly by two heat transfer modes: flow heat transfer and solid conductivity. Generally, the research results indicate that the MPS method has unique advantage in studying the migration and solidification behavior in LBR severe accident.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0