메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김의담 (한양대학교) 정윤선 (한양대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제54권 제4호
발행연도
2022.4
수록면
1,439 - 1,448 (10page)
DOI
https://doi.org/10.1016/j.net.2021.10.020

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expressionusing deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquiredfrom the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2)from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity predictionmodel was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied totrain and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using thelarge-errored samples as a validation set, to determine whether the error was from the high bias of thefolded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relativeerror<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the foldedCV. Through an additional LOOCV, one more sample was correctly predicted, representing a predictionaccuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity predictionusing gene expression

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0