메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
방신옥 (전남대학교) 김동수 (전남대학교) 김인천 (전남대학교)
저널정보
대한수학회 대한수학회보 대한수학회보 제59권 제2호
발행연도
2022.3
수록면
407 - 417 (11page)
DOI
10.4134/BKMS.b210311

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Archimedes proved that for a point $P$ on a parabola $X$ and a chord $AB$ of $X$ parallel to the tangent of $X$ at $P$, the area of the region bounded by the parabola $X$ and the chord $AB$ is four thirds of the area of the triangle $\bigtriangleup ABP$. This property was proved to be a characteristic of parabolas, so called the Archimedean characterization of parabolas. In this article, we study strictly convex curves in the plane ${\mathbb R}^{2}$. As a result, first using a functional equation we establish a characterization theorem for quadrics. With the help of this characterization we give another proof of the Archimedean characterization of parabolas. Finally, we present two related conditions which are necessary and sufficient for a strictly convex curve in the plane to be an open arc of a parabola.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0