메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
천정수 (부산대학교) 곽태근 (대진대학교) 이양 (延邊大學) Zhelin Piao (Yanbian University) 윤상조 (동아대학교)
저널정보
대한수학회 대한수학회보 대한수학회보 제59권 제3호
발행연도
2022.5
수록면
529 - 545 (17page)
DOI
10.4134/BKMS.b201014

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring $R$ is called {\it right CIFD} if $R/I$ is right duo by some proper ideal $I$ of $R$ such that $I$ is contained in the center of $R$. We first see that this property is seated between right duo and right $\pi$-duo\textbf{,} and not left-right symmetric. We prove, for a right CIFD ring $R$, that $W(R)$ coincides with the set of all nilpotent elements of $R$; that $R/P$ is a right duo domain for every minimal prime ideal $P$ of $R$; that $R/W(R)$ is strongly right bounded; and that every prime ideal of $R$ is maximal if and only if $R/W(R)$ is strongly regular, where $W(R)$ is the Wedderburn radical of $R$. It is also proved that a ring $R$ is commutative if and only if $D_3(R)$ is right CIFD, where $D_3(R)$ is the ring of $3$ by $3$ upper triangular matrices over $R$ whose diagonals are equal. Furthermore\textbf{,} we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring $R$ is right CIFD if and only if $R/I$ is commutative by a proper ideal $I$ of $R$ contained in the center of $R$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0