메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Duranta Chutia (Tezpur University) Rajib Haloi (Tezpur University)
저널정보
대한수학회 대한수학회보 대한수학회보 제59권 제3호
발행연도
2022.5
수록면
757 - 780 (24page)
DOI
10.4134/BKMS.b210469

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this article, we study the weak and extra-weak type integral inequalities for the modified integral Hardy operators. We provide suitable conditions on the weights $\omega, \rho, \phi$ and $\psi$ to hold the following weak type modular inequality \begin{align*} \mathcal{U}^{-1} \bigg ( \int_{ \{ | \mathcal{I}f | > \gamma\}} \mathcal{U} \Big(\gamma \omega \Big ) \rho \bigg ) & \leq \mathcal{V}^{-1} \bigg ( \int_{0}^{\infty} \mathcal{V} \Big ( C |f| \phi\Big) \psi \bigg ), \end{align*} where $\mathcal{I}$ is the modified integral Hardy operators. We also obtain a necesary and sufficient condition for the following extra-weak type integral inequality \begin{align*} \omega \bigg ( \Big\{ |\mathcal{I}f| > \gamma \Big \} \bigg) &\leq \mathcal{U}\circ \mathcal{V}^{-1} \bigg ( \int_{0}^{\infty} \mathcal{V} \bigg ( \dfrac{C |f| \phi}{\gamma} \bigg) \psi \bigg ). \end{align*} Further, we discuss the above two inequalities for the conjugate of the modified integral Hardy operators. It will extend the existing results for the Hardy operator and its integral version.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0