메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김경중 (한국항공대학교)
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제37권 제1호
발행연도
2022.1
수록면
303 - 326 (24page)
DOI
10.4134/CKMS.c210010

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Our aim is to construct Hermite-type exponentially fitted interpolation formulas that use not only the pointwise values of an $\omega$-dependent function $f$ but also the values of its first derivative at three unequally spaced nodes. The function $f$ is of the form, \begin{equation*} \begin{array}{ccc} f(x) = g_1(x) \cos (\omega x) + g_2(x) \sin (\omega x), \,\, x \in [a, b], \end{array} \end{equation*} where $g_1$ and $g_2$ are smooth enough to be well approximated by polynomials. To achieve such an aim, we first present Hermite-type exponentially fitted interpolation formulas $I_N$ built on the foundation using $N$ unequally spaced nodes. Then the coefficients of $I_N$ are determined by solving a linear system, and some of the properties of these coefficients are obtained. When $N$ is $2$ or $3,$ some results are obtained with respect to the determinant of the coefficient matrix of the linear system which is associated with $I_N.$ For $N=3,$ the errors for $I_N$ are approached theoretically and they are compared numerically with the errors for other interpolation formulas.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0