메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Abderrahim Adrabi (Mohammed V University in Rabat) Driss Bennis (Mohammed V University in Rabat) Brahim Fahid (Ibn Tofail University)
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제37권 제4호
발행연도
2022.10
수록면
957 - 967 (11page)
DOI
10.4134/CKMS.c210346

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, Bre\v{s}ar's Jordan $\{g,h\}$-derivations have been investigated on triangular algebras. As a first aim of this paper, we extend this study to an interesting general context. Namely, we introduce the notion of Jordan $\mathcal{G}_n$-derivations, with $n \ge 2$, which is a natural generalization of Jordan $\{g,h\}$-derivations. Then, we study this notion on path algebras. We prove that, when $n > 2$, every Jordan $\mathcal{G}_n$-derivation on a path algebra is a $\{g,h\}$-derivation. However, when $n = 2$, we give an example showing that this implication does not hold true in general. So, we characterize when it holds. As a second aim, we give a positive answer to a variant of Lvov-Kaplansky conjecture on path algebras. Namely, we show that the set of values of a multi-linear polynomial on a path algebra $KE$ is either $\{0\}$, $KE$ or the space spanned by paths of a length greater than or equal to $1$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0