메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jun Liu (Chain University of Mining and Technology) Yaqian Lu (Chain University of Mining and Technology) Mingdong Zhang (Beijing Normal University)
저널정보
대한수학회 대한수학회지 대한수학회지 제59권 제5호
발행연도
2022.9
수록면
927 - 944 (18page)
DOI
10.4134/JKMS.j210747

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $\vec{p}\in(0,1]^n$ be an $n$-dimensional vector and $A$ a dilation. Let $H_A^{\vec{p}}(\mathbb{R}^n)$ denote the anisotropic mixed-norm Hardy space defined via the radial maximal function. Using the known atomic characterization of $H_{A}^{\vec{p}}(\mathbb{R}^n)$ and establishing a uniform estimate for corresponding atoms, the authors prove that the Fourier transform of $f\in H_A^{\vec{p}}(\mathbb{R}^n)$ coincides with a continuous function $F$ on $\mathbb{R}^n$ in the sense of tempered distributions. Moreover, the function $F$ can be controlled pointwisely by the product of the Hardy space norm of $f$ and a step function with respect to the transpose matrix of $A$. As applications, the authors obtain a higher order of convergence for the function $F$ at the origin, and an analogue of Hardy--Littlewood inequalities in the present setting of $H_A^{\vec{p}}(\mathbb{R}^n)$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0