메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이현중 (충북대학교) 고승환 (충북대학교) 박종화 (충북대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제38권 제6호
발행연도
2022.12
수록면
1,489 - 1,503 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
드론(drone)과 센서(senor) 적용기술은 농업분야 작물의 성장 정보에 대한 디지털화를 가능하게 하면서정밀농업 발전을 한층 가속화하고 있다. 이 기술은 자연재해 발생시 농작물 피해량 산정을 가능하게 하고, 현장 방문조사로 진행되고 있는 농작물재해보험 평가방법의 과학화에 기여할 수 있다. 본 연구는 콩을 대상으로 드론 기반 RGB영상을 취득하여 추출된 식생지수로 도복피해율을 산정하는 방법을 개발하고자 하였다. Support Vector Classifier (SVC) 분류 모델은 Crop Surface Model (CSM) 기반의 도복피해율에 식생지수를 추가하여 식생지수 적용성을 검토하였다. 식생지수 중 Visible Atmospherically Resistant Index (VARI), Green RedVegetation Index (GRVI) 기반 콩의 도복피해율 분류 정확도는 각각 0.709, 0.705로 높은 분류정확도를 나타내었다. 연구 결과, 드론 기반 RGB 영상은 도복피해율 산정에 매우 유용한 도구로 활용 가능하다는 점을 확인할 수있었다. 본 연구에서 얻어진 결과는 이상기후로 인한 광역 지역 자연재해에 대한 도복피해 산정 시 Sentinel-2,RapidEye 위성과 더불어 2025년 발사 예정인 농림업중형위성 영상과 연계해 활용 가능할 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0