메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조용복 (고려대학교) 조동우 (고려대학교 빅데이터사이언스학부) 최보승 (고려대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제24권 제2호
발행연도
2022.4
수록면
639 - 651 (13page)
DOI
10.37727/jkdas.2022.24.2.639

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기업 부도모형에 사용되는 데이터는 정상기업이 부도기업에 비해 압도적으로 많이 관측되는 대표적인 불균형 데이터이며, 과거 및 현재의 재무변수를 사용하여 부도 사건을 예측하는 시계열 데이터의 특성을 지니고 있다. 따라서 예측모형을 구축하는데 있어 이러한 데이터의 불균형 문제와 시계열적 특성의 반영에 각별한 주의가 필요하다. 본 연구는 부도 예측모형 구축과정에서 고려해야 하는 불균형 자료 해소와 시계열 자료의 특성이 반영된 모형 검증방안에 대한 비교연구를 진행하였다. 실증분석을 위해 한국거래소에 상장된 기업을 대상으로 부도모형을 구축하였고, 모형의 예측 성능을 비교분석 하였다. 이를 통하여 첫째, 학습데이터의 불균형 문제는 oversampling기법을 고려할 때 예측모형의 일반화 성능을 확보할 수 있음을 확인하였다. 하지만, oversampling기법 간의 성능 차이는 뚜렷하게 나타나지 않았다. 둘째, 일반적으로 많이 사용하는 k-fold 교차검증과 전진교차검증을 비교한 결과 시간의 흐름에 대한 고려 없이 추정된 모형을 사용하였을 때 그 예측 성과가 과대 추정될 수 있음을 확인하였고, 이를 통해 시계열 데이터에 대한 전진교차검증의 필요성을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0