메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이대희 (유원(U1)대학교) 한슬기 (대전보건대학교)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제28권 제1호
발행연도
2022.1
수록면
95 - 101 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Aquatic therapy is a significant intervention method for both patients and healthy individuals. However, in clinicalpractice, quantitative measurements are rarely applied in aquatic therapy due to the disadvantages of submerging expensiveinstruments in water. In this study, we used readily available smartphones and armbands to measure leg segments andjoint angles during aquatic gait and evaluated the reliability of these measurements. Methods: Waterproof smartphones werestrapped to the trunk, thighs, and shanks of 19 healthy young adults using armbands. The angles of the trunk, thigh, andshank segments were measured during aquatic gait. The measurements were repeated 1 day later. The data were analyzed toobtain the angles of the hip and knee joints. Results: Measurement repeatability, calculated using the intraclass correlationcoefficient (ICC), was the highest for the shank segment range of motion (ROM) (first 46.79° ± 5.50°, second 50.12° ± 9.98°,ICC = 0.78). There was high agreement in trunk segment ROM (first 6.36° ± 1.42°, second 4.29° ± 1.83°, ICC = 0.73), thighsegment ROM (first 33.49° ± 5.18°, second 37.31° ± 8.70°, ICC = 0.62), and knee joint ROM (first 52.43° ± 11.26°, second62.19° ± 16.65°, ICC = 0.68) and fair agreement in hip joint ROM (first 34.60°±4.71°, second 37.80° ± 7.84°, ICC = 0.59). Conclusions: Smartphones can be used to reliably measure leg segments and joint angles during aquatic gait, providing asimpler method for obtaining these measurements and enabling the wider use of aquatic motion analysis in clinical practiceand research.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0