메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
배진아 (인하대학교) 이준구 (삼성전자 전략마케팅팀)
저널정보
국제언어인문학회 인문언어 인문언어 제24권 제1호
발행연도
2022.6
수록면
45 - 69 (25page)
DOI
https://doi.org/10.16945/inahsl.24.1.2

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, topic modeling technique, which is one of big data analysis techniques using artificial intelligence, was applied to the investigation of the research trends of Quebec literature in North America. The data collection was done through the Web of science, and 421 Quebec literature-related papers published in North America over the last 20 years were collected. The data consisted of the titles, abstracts, and keywords of these papers, and LDA, an algorithm for topic modeling was used to analyze the data. According to the Word Cloud result, it was found that the genres of ‘novel’ and ‘poetry’ were the most studied. As a result of the LDA analysis, eight topics were created, and the topics were : ‘Quebec identity and immigrant litterature’, ‘Short story and essay’, ‘Translation and various cultures’, ‘Quebec novels and authors’, ‘Contemporary Quebec theatre and drama’, ‘Poetry’, ‘History of Quebec literature’, and ‘Quebec women's literature’. The results of this study are significant in that they attempted to analyze a vast amount of literature research papers by applying big data analysis techniques based on artificial intelligence, and are expected to serve as a stepping stone for similar studies in the future.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0