메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jung Hyun Lee (Kosin University College of Medicine) Eunsoo Moon (Pusan National University Hospital) Jeonghyun Park (Pusan National University Hospital) Chi Eun Oh (Kosin University College of Medicine) Yoo Rha Hong (Kosin University College of Medicine) Min Yoon (Pukyung National University)
저널정보
대한신경정신의학회 PSYCHIATRY INVESTIGATION PSYCHIATRY INVESTIGATION 제19권 제5호
발행연도
2022.5
수록면
380 - 385 (6page)
DOI
10.30773/pi.2021.0395

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective Data processing in analysis of circadian rhythm was performed in various ways. However, there was a lack of evidence for the optimal analysis of circadian rest-activity rhythm. Therefore, we aimed to perform mathematical simulations of data processing to investigate proper evidence for the optimal analysis of circadian rest-activity rhythm.Methods Locomotor activities of 20 ICR male mice were measured by infrared motion detectors. The data of locomotor activities was processed using data summation, data average, and data moving average methods for cosinor analysis. Circadian indices were estimated according to time block, respectively. Also, statistical F and p-values were calculated by zero-amplitude test.Results The data moving average result showed well-fitted cosine curves independent of data processing time. Meanwhile, the amplitude, MESOR, and acrophase were properly estimated within 800 seconds in data summation and data average methods.Conclusion These findings suggest that data moving average would be an optimal method for data processing in a cosinor analysis and data average within 800-second data processing time might be adaptable. The results of this study can be helpful to analyze circadian restactivity rhythms and integrate the results of the studies using different data processing methods.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0