메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shun Weng (Huazhong University of Science and Technology) Ke Gao (Huazhong University of Science and Technology) Zhi-Dan Chen (Huazhong University of Science and Technology) Hong Ping Zhu (Huazhong University of Science and Technology) Li-Ying Wu (Huazhong University of Science and Technology)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.29 No.1
발행연도
2022.1
수록면
129 - 140 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0