메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jong-Won Lee (Namseoul University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.30 No.2
발행연도
2022.8
수록면
173 - 181 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The current paper presents a technique to detect crack in non-uniform cantilever-type pipe beams, that have step changes in the properties of their cross sections, restrained by a translational and rotational spring with a tip mass at the free end. An equation for estimating the natural frequencies for the non-uniform beams is derived using the boundary and continuity conditions, and an equivalent bending stiffness for cracked beam is applied to calculate the natural frequencies of the crackedbeam. An experimental study for a step-changed non-uniform cantilever-type pipe beam restrained by bolts with a tip mass is carried out to verify the proposed method. The translational and rotational spring constants are updated using the neural network technique to the results of the experiment for intact case in order to establish a baseline model for the subsequent crack detection. Then, several numerical simulations for the specimen are carried out using the derived equation for estimating the natural frequencies of the cracked beam to construct a set of training patterns of a neural network. The crack locations and sizes are identified using the trained neural network for the 5 damage cases. It is found that the crack locations and sizes are reasonably well estimated from a practical point of view. And it is considered that the usefulness of the proposed method for structural health monitoring of the step-changed non-uniform cantilever-type pipe beam-like structures elastically restrained in the ground and have a tip mass at the free end could be verified.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0