메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
구건우 (동국대학교) 이재민 (동국대학교) 박명관 (동국대학교)
저널정보
서강대학교 언어정보연구소 언어와 정보사회 언어와 정보 사회 제46권
발행연도
2022.7
수록면
103 - 126 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
The GRNN (Gulordava et al. 2018) neural language model (NLM) is viewed as a language learner in that it is trained with sentences and, like humans, ‘predicts’ the next-word given a sequence of words. Recent studies employing NLMs have reported their human-like performances in ‘understanding’ various linguistic phenomena. Building on previous studies, this paper aims to assess the level of linguistic knowledge that an NLM can acquire from a collection of English textbooks published in Korea for last two decades. We applied a psycholinguistic experimental method to compare the L2-GRNN to the L1-GRNN, focusing on the learning/processing of negative polarity item (NPI)-licensing in English. The L1-GRNN LM that was trained with the dataset from Wikipedia was reported to attain the linguistic knowledge that native speakers of English have. The L2-GRNN LM was trained with learning materials for Korean English learners. The result of analyzing the data extracted from the NLMs in NPI processing showed that the overall performance of the L2-GRNN NLM was far behind that of the L1-GRNN LM. In conclusion, this study demonstrates that the L2-GRNN has attained a far lower level of grammatical knowledge in NPI processing than its L1 counterpart. This result implies that the L2 dataset representing English textbooks published in Korea is not enough for the L2-GRNN NLM to acquire substantial grammatical knowledge that the L1-GRNN NLM as well as native speakers has.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0