메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ali Bamshad (Shahed University, P.O.Box: 3319118651, Tehran, Iran) Omid Safarzadeh (Shahed University, P.O.Box: 3319118651, Tehran, Iran)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제4호
발행연도
2021.04
수록면
1,369 - 1,377 (9page)
DOI
https://doi.org/10.1016/j.net.2020.09.005

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Nowadays, it is necessary to accelerate the construction of new power plant in face of rising energydemand in such a way that the electricity will be generated at the lowest cost while reducing emissionscaused by that generation. The expansion planning is one of the most important issues in electricitymanagement. Nuclear energy comes forward with the low-carbon technology and increasing competitivenessto expand the share of generated energy by introducing Gen IV reactors. In this paper, thegeneration expansion planning of these new Gen reactors is investigated using the WASP software. Iranpower grid is selected as a case of study.We present a comparison of the twenty-one year perspective onthe future with the development of (1) traditional thermal power plants and Gen II reactors, (2) GenIII þ reactors with traditional thermal power plants, (3) Gen IV reactors and traditional thermal powerplants, (4) Gen III þ reactors and the new generation of the thermal power plant, (5) the new generationof thermal power plants and the Gen IV reactors. The results show that the Gen IV reactors have the mostdeveloping among other types of power plants leading to reduce the operating costs and emissions. Theobtained results show that the use of new Gen of combined cycle power plant and Gen IV reactors makethe emissions and cost to be reduced to 16% and 72% of Gen II NPPs and traditional thermal power plants,respectively.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0