메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
E.Diaz Pescador (Helmholtz Zentrum Dresden Rossendorf (HZDR), 01328, Dresden, Germany) F. Schafer (Helmholtz Zentrum Dresden Rossendorf (HZDR), 01328, Dresden, Germany) S. Kliem (Helmholtz Zentrum Dresden Rossendorf (HZDR), 01328, Dresden, Germany)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제10호
발행연도
2021.10
수록면
3,182 - 3,195 (14page)
DOI
https://doi.org/10.1016/j.net.2021.04.015

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The implementation and validation of multi-dimensional (multi-D) features in thermal-hydraulic systemcodes aims to extend the application of these codes towards multi-scale simulations. The main goal is thesimulation of large-scale three-dimensional effects inside large volumes such as piping or vessel. Thisnovel approach becomes especially relevant during the simulation of accidents with strongly asymmetricflow conditions entailing density gradients. Under such conditions, coolant mixing is a key phenomenonon the eventual variation of the coolant temperature and/or boron concentration at the core inlet and onthe extent of a local re-criticality based on the reactivity feedback effects. This approach presents severaladvantages compared to CFD calculations, mainly concerning the model size and computational efforts. However, the range of applicability and accuracy of the newly implemented physical models at this pointis still limited and needs to be further extended. This paper aims at contributing to the validation of themulti-D features of the system code ATHLET based on the simulation of the Tests 1.1 and 2.1, conducted atthe test facility ROCOM. Overall, the multi-D features of ATHLET predict reasonably well the evolutionfrom both experiments, despite an observed overprediction of coolant mixing at the vessel during bothexperiments

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0