메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Bamidele Ebiwonjumi (울산과학기술원) Alexey Cherezov (울산과학기술원) Siarhei Dzianisau (울산과학기술원) 이덕중 (울산과학기술원)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제11호
발행연도
2021.11
수록면
3,563 - 3,579 (17page)
DOI
https://doi.org/10.1016/j.net.2021.05.037

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adoptedto train machine learning (ML) models. The measured data is available for fuel assemblies irradiated incommercial reactors operated in the United States and Sweden. The data comes from calorimetricmeasurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuelassemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii)to generate and use synthetic data, as large dataset which has similar statistical characteristics as theoriginal dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averagedenrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. Theoutcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heatfrom the four inputs (ii) generation and application of synthetic data which improves the performance ofthe ML models (iii) uncertainty analysis of the ML models and their predictions

목차

등록된 정보가 없습니다.

참고문헌 (54)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0