메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박민석 (한국원자력의학원) 김한성 (한국원자력의학원) 유재룡 (한국원자력의학원 국가방사선비상진료센터) 김찬형 (한양대학교) 장원일 (한국원자력의학원) 박선후 (한국원자력의학원)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제12호
발행연도
2021.12
수록면
4,122 - 4,129 (8page)
DOI
https://doi.org/10.1016/j.net.2021.06.026

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The counting efficiencies obtained using anthropomorphic physical phantoms are generally used inwhole-body counting measurements to determine the level of internal contamination in the body. Geometrical discrepancies between phantoms and measured individuals affect the counting efficiency,and thus, considering individual physical characteristics is crucial to improve the accuracy of activityestimates. In the present study, the counting efficiencies of whole-body counting measurements werecalculated considering individual physical characteristics by employing Monte Carlo simulation forcalibration. The NaI(Tl)-based stand-up and HPGe-based bed type commercial whole-body counterswere used for calculating the counting efficiencies. The counting efficiencies were obtained from 19computational phantoms representing various shapes and sizes of the measured individuals. The discrepancies in the counting efficiencies obtained using the computational and physical phantoms rangefrom 2% to 33%, and the results indicate that the counting efficiency depends on the size of the measuredindividual. Taking into account the body size, the equations for estimating the counting efficiencies werederived from the relationship between the counting efficiencies and the body-build index of the subject. These equations can aid in minimizing the size dependency of the counting efficiency and provide moreaccurate measurements of internal contamination in whole-body counting measurements

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0