메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhang Weiwen (Guangdong University of Technology) Cheng Lianglun (Guangdong University of Technology) Huang Guoheng (Guangdong University of Technology)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.43 No.10
발행연도
2021.10
수록면
1,143 - 1,155 (13page)
DOI
10.1007/s13258-021-01057-4

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Population stratifcation modeling is essential in Genome-Wide Association Studies. Objective In this paper, we aim to build a fne-scale population stratifcation model to efciently infer individual genetic ancestry. Methods Kernel Principal Component Analysis (PCA) and random forest are adopted to build the population stratifcation model, together with parameter optimization. We explore diferent PCA methods, including standard PCA and kernel PCA to extract relevant features from the genotype data that is transformed by vcf2geno, a pipeline from LASER software. These extracted features are fed into a random forest for ensemble learning. Parameter tuning is performed to jointly fnd the optimal number of principal components, kernel function for PCA and parameters of the random forest. Results Experiments based on HGDP dataset show that kernel PCA with Sigmoid function and Gaussian function can achieve higher prediction accuracy than the standard PCA. Compared to standard PCA with the two principal components, the accuracy by using KPCA-Sigmoid with the optimal number of principal components can achieve around 100% and 200% improvement for East Asian and European populations, respectively. Conclusion With the optimal parameter confguration on both PCA and random forest, our proposed method can infer the individual genetic ancestry more accurately, given their variants.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0