메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
마종원 (연세대학교) 이경도 (농촌진흥청 국립농업과학원) 최기영 (통계청 농어업통계과) 허준 (연세대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제33권 제5호
발행연도
2017.10
수록면
631 - 640 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
쌀 생산량 예측 및 조사는 농가 소득 보전 및 농업 분야 기관에 영향을 주고 수급 조절과 가격 예측등 정부의 정책 수립과 관련하여 중요한 의미를 갖는다. 이에 따라 작황 추정 모델의 구축이 필요하며 과거로부터 기상 자료 및 위성 자료를 통해 경험적 통계 모델 또는 인공신경망 알고리즘을 기반으로 한 연구가다수 진행되었다. 현재 인공신경망 모델을 기반으로 개발된 딥 러닝 알고리즘이 패턴 인식, 컴퓨터 비전, 음성 인식 등의 분야에서 폭넓게 사용되며 뛰어난 성능을 보이고 있다. 최근 다양한 딥 러닝 알고리즘 중 SSAE 알고리즘이 시계열 자료를 통한 예측 분야에서 적용 가능성이 확인되었으며 본 연구에서는 SSAE를 통해 남한 전역에 대한 쌀 생산량 추정 연구를 진행하였다. 입력 변수로 기상자료와 위성자료를 사용하였으며 남한벼의 생육 기간을 고려하여 입력 자료를 기간별로 나누고 최적의 입력 자료롤 찾고자 하였다. 실험 결과, 5월부터 9월까지의 위성 자료와 16일 평균값을 사용한 기상 자료와의 조합을 사용하였을 경우 평균 연도별%RMSE, 시군구 %RMSE 각각 7.43%, 7.16%로 가장 좋은 성능을 보였으며 이를 통해 쌀 생산량 추정 분야에 대한 SSAE 알고리즘의 적용 가능성을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0