본 연구는 토양의 수분 상태를 고해상으로 관측 및 분석하고 농업분야에의 응용 가능성을 평가하기위한 연구이다. 이를 위하여 Landsat-8 OLI(Operational Land Imager)/TIRS(Thermal Infrared Sensor) 의 광학 및 열적외선 위성영상을 연구자료로 전라북도 농업지역을 포함(연구자료 내 46%)하는 2015, 2016, 및 2017년 5-6월에 촬영된 영상 세 장을 이용하였다. 연구지역의 각 영상 촬영일의 토양의 수분 상태는SPI(Standardized Precipitation Index)3 가뭄지수를 통하여 효과적으로 획득할 수 있으며, 각 영상은 보통, 습윤, 및 건조한 토양 수분 조건을 갖는다. 이러한 각기 다른 토양수분 조건을 갖는 영상을 대상으로 토양의 수분 상태를 관측하고 SPI3 가뭄지수로부터 획득한 토양의 수분 상태와 비교/분석을 수행기 위하여, TVDI(Temperature Vegetation Dryness Index)를 계산하였다. TVDI는 Landsat-8 OLI/TIRS 위성영상으로부터 계산한 LST(Land Surface Temperature) 및 NDVI(Normalized Difference Vegetation Index) 의 관계로부터 추정하여 계산된다. LST-NDVI의 형상 공간 내 픽셀의 분포에서 NDVI에 따른 LST의 최대/ 최소값을 추출하고 이를 대상으로 각각 선형회귀분석(linear regression analysis)을 통하여 NDVI에 따른LST의 Dry/Wet edge를 결정할 수 있으며, 최종적으로 NDVI에 따른 두 edge 사이에서의 LST 값의 비율을계산하여 TVDI 값을 계산한다. TVDI 값으로부터 관측된 영상 내 상대적인 토양의 수분 상태를 매우 습윤, 습윤, 보통, 건조, 매우 건조의 5단계로 분류하여 SPI3로부터 획득한 각각의 토양수분 상태와 비교하였다.
연구자료 획득시기인 5-6월 시기의 특성상 모내기로 인하여 영상 내 가장 많은 비율을 차지하는 논 지역의영향으로 영상 전체 중, 약 62% 이상이 습윤 및 매우 습윤한 상태로 분류되었다. 또한, 보통으로 분류되는픽셀은 영상 내 밭 지역의 영향 때문으로 분석되었다. 영상 전체에 대해서는 대략적으로 SPI3의 토양수분상태와 대응하였지만 매우 건조, 습윤, 및 매우 습윤에 해당하는 세분류 결과에서는 SPI3 토양수분 상태와대응하지 않았다. 또한, 영상에서 논과 밭의 농업지역을 추출 및 분류한 후, SPI3 토양수분 상태와 비교하였을 때, 논 지역의 토양수분 상태 관측 분류 결과는 매우 건조, 보통 및 매우 습윤에서, 밭 지역은 보통의 분류에서만 SPI3 가뭄지수와 대응하지 않았다. 이는 매우 건조한 나지 및 매우 습윤한 모내기로 인한 논 지역, 수계, 구름 및 산지 지형효과 등의 이상치로 인하여 잘못된 Dry/Wet edge 추정의 문제로 사료되어진다. 그러나 5-6월 시기의 농업지역 중, 밭 지역에서는 세분류된 토양의 수분 상태를 효과적으로 관측할 수 있었다.
고해상 광학위성 기반 농업지역에 대한 토양수분 상태의 시·공간적 변화를 관측하여 농업지역의 농업생산량예측 등 그 응용이 가능할 것으로 사료된다.
The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat- 8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image.
Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.