메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조성억 (부경대학교) 안지혜 (부경대학교) 이양원 (부경대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제5호
발행연도
2021.10
수록면
1,187 - 1,198 (12page)
DOI
https://doi.org/10.7780/kjrs.2021.37.5.1.28

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
해상풍 데이터는 최근 들어서 신재생 에너지 개발의 일환으로 해상 풍력발전 단지가 각광받으면서 더욱중요성을 더하고 있다. 본 연구에서는 2015~2020년 부울경(부산, 울산, 경남) 연안해역을 촬영한 Sentinel-1 영상368장과 저해상도 수치모델의 UV 컴포넌트를 이용한 DNN (Deep Neural Network) 모델을 개발하여 해상풍 데이터를 공간해상도 10 m 수준으로 정밀하게 생산하는 방법을 제시하였다. 이를 통해 기존의 CMOD (C-band Model) 함수에 비해 40% 정도 오차가 감소하였으며, U 컴포넌트와 V 컴포넌트는 각각 상관계수 0.901, 0.826의비교적 높은 정확도를 나타냈다. 본 연구에서 부울경 해역(해안선으로부터 3 km 버퍼 영역)에 대해 산출한 10 m 해상도의 바람장 지도를 작성해 보면, 내륙에서 외해로 갈수록 풍속이 강해지는 일반적인 경향을 따르면서도 공간적으로 상세화된 바람 패턴을 잘 나타낼 수 있었다. 이러한 고해상도 해상풍 지도는 해상 풍력발전을 위한 상세조사뿐 아니라, SAR를 활용한 전천후 연안 방재 및 연안레저 정보 제공을 지원할 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0