메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이여진 (부경대학교) 박한훈 (부경대학교)
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제22권 제3호
발행연도
2021.9
수록면
99 - 103 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 CNN(Convolutional Neural Network)이 다양한 컴퓨터 비전 분야에서 우수한 성능으로 널리 사용되고 있다. 그러나 CNN은 계산 집약적이고 많은 메모리가 요구되어 한정적인 하드웨어 자원을 가지는 모바일이나 IoT(Internet of Things) 기기에 적용하기 어렵다. 이런 한계를 해결하기 위해, 기존의 학습된 모델의 성능을 최대한 유지하며 네트워크의 크기를 줄이는 인공신경망 경량화 연구가 진행되고 있다. 본 논문은 신경망 압축 기술 중 하나인 프루닝(Pruning)의 문턱값을 동적으로 조정하는 CNN 압축 기법을 제안한다. 프루닝될 가중치를 결정하는 문턱값을 실험적, 경험적으로 정하는 기존의 기술과 달리 정확도의 저하를 방지하는 최적의 문턱값을 동적으로 찾을 수 있으며, 경량화된 신경망을 얻는 시간을 단축할 수 있다. 제안 기법의 성능 검증을 위해 MNIST 데이터 셋을 사용하여 LeNet을 훈련시켰으며, 정확도 손실 없이 약 1.3 ~ 3배의 시간을 단축하여 경량화된 LeNet을 얻을 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0