메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김형범 (상명대학교) 민경하 (상명대학교) 양희경 (상명대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제34권 제3호
발행연도
2021.9
수록면
65 - 73 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We present a super resolution algorithm that increases the resolution of game scenes. Since game scenes are required to be rendered in real time, rendering high-resolutional game scenes in real time is very challenging. Therefore, increasing the resolution of game scenes rendered in low resolution is very promising. In order to present a fast super resolution algorithm, we implement our super resolution algorithm using a sparse matrix operation that can be accelerated through a matrix multiplication unit (MMU). Since many open source GPUs present an acceleration environment, our MMU-based approach can be implemented in many open source GPUs. As a baseline of our approach, we present a sparse matrix multiplication formula of bilinear interpolation and bicubic interpolation. We furthermore present a sparse matrix multiplication form of a convolution operation, which is necessary for deep learning-based super resolution algorithms. The filters employed in the convolution operations are converted to a series of sparse matrices, which are multiplied to complete the deep learning-based super resolution model. We demonstrate the performance of our approach by measuring peak signal-to-noise ratio (PSNR) and mean opinion score (MOS) of the result images generated by our approach and by the existing methods.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0