메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Daniel James (Association of Scientists Developers and Faculties) 이승현 (중앙대학교) 이원형 (중앙대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제34권 제4호
발행연도
2021.12
수록면
125 - 137 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Social network has become an integral part of our daily life. Sentiment analysis of social media information is helpful to understand people's views, attitudes and emotions on social networking sites. Traditional sentiment analysis mainly relies on text. With the rise of smart phones, information on the network is gradually diversified, including not only text, but also images. It is found that, in many cases, images can enhance the text rather than express emotions independently. We propose a novel image text sentiment analysis model (LSTM-VAA). Specifically, this model does not take the picture information as the direct input, but uses the VGG16 network to extract the image features, and then generates the visual aspect attention, and gives the core sentences in the document a higher weight, and get a document representation based on the visual aspect attention. In addition, we use the LSTM network to extract the text sentiment and get the document representation based on text only. Finally, we fuse the two groups of classification results to obtain the final classification label. On the yelp restaurant reviews data set, our model achieves an accuracy of 62.08%, which is 18.92% higher than BiGRU-m VGG, which verifies the effectiveness of using visual information as aspect attention assisted text for emotion classification; It is 0.32% higher than Vista-Net model, which proves that LSTM model can effectively make up for the defect that images in Vista-Net model cannot completely cover text.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0