메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
현미진 (경남대학교)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제19권 제9호
발행연도
2021.9
수록면
463 - 468 (6page)
DOI
https://doi.org/10.14400/JDC.2021.19.9.463

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
IoT는 기술의 발전과 IoT 기기의 보급 및 서비스의 활성화로 폭발적인 증가세를 보이고 있지만, 최근 다양한 봇넷의 활동에 의해 심각한 보안 위험과 재정적 피해가 발생하고 있다. 따라서 이러한 봇넷의 활동을 정확하고 빠르게 탐지하는 것이 중요하다고 할 수 있다. IoT 환경에서의 보안은 최소한의 프로세싱 성능과 메모리로 운영을 해야 하는 특성이 있는 만큼, 본 논문에서는 탐지를 위한 최소한의 특성을 선택하고, KNN(K-Nearest Neighbor), Naive Bayes, Decision Tree, Random Forest와 같은 머신러닝 알고리즘이 봇넷의 활동을 탐지하는 성능을 비교연구 하였다. Bot-IoT 데이터셋을 사용한 실험 결과는 적용한 머신러닝 알고리즘 중 KNN이 DDoS, DoS, Reconnaissance 공격을 가장 효과적이고 효율적으로 탐지할 수 있음을 보여주었다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0