메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Musa Artar (Bayburt University)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.40 No.6
발행연도
2021.9
수록면
795 - 803 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents a research on optimum design of cold-formed steel space frames using a new algorithm method named Jaya, which has been developed in recent years. The most obvious difference of Jaya algorithm from other algorithms is that it does not need any control parameters for updating. However, Jaya algorithm is able to successfully reach the optimum solutions without any delay. In this study, in order to test the robustness and practicality of this novel algorithm technique, different steel space frame problems that have been studied with other algorithms in literature are examined. The minimum weight designs of the problems are carried out by selecting suitable C-section from a prepared list including 85 C-sections with lips taken from American Iron and Steel Institute (AISI 2008). A program is coded in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) in order to obtain optimum solutions. The strength constraints according to AISI-LRFD (Load and Resistance Factor Design), lateral displacement constraints, inter-story drift constraints and geometrical constraints are taken into account in the analyses. Two different cold-formed steel space frames are taken from literature to research optimum solutions by using Jaya algorithm. The first steel space frame is 379-member and the second steel space frame is 1211-member. The results obtained using Jaya algorithm are compared with those in reference studies. The results prove that Jaya algorithm technique is quite successful and practical optimum design of cold-formed steel space frames.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0