메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
히크마트 야르 (세종대학교) 후세인 탄베르 (세종대학교) 줄피카르 아마드 칸 (세종대학교) 이미영 (세종대학교) 백성욱 (세종대학교)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제17권 제5호
발행연도
2021.10
수록면
21 - 30 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In today's modern age, smart and safe cities are one of the major concerns of the research community. The cities are surrounded by open areas, agricultural land, and forests, where fire incidence can make human lives threatening, damaging their properties as well. Recently, vision sensors-based fire detection has attracted computer vision domain experts, where the leading performance is achieved by a variety of convolution neural networks (CNN) in the recent literature. However, these techniques are translation invariant, locality-sensitive, and lacking a global understanding of images. Furthermore, CNN-based models use the pooling layers strategy for dimensionality reduction to reduce the computational cost but it also loses a lot of meaningful information such as the precise location of the most active feature detector. To overcome these problems, in this work, we developed Vision Transformers (ViT) based model for fire detection. The ViT split the input image into image patches and then feed these patches to the transformer in a sequence structure similar to word embeddings. We evaluate the performance of the proposed work on the benchmark fire dataset and achieve good results when compared to state-of-the-art (SOTA) CNN methods.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0