메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김찬호 (인하대학교) 박인규 (인하대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제28권 제2호
발행연도
2023.3
수록면
238 - 241 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인공지능 모델을 이용한 얼굴인식, 얼굴 수정 등 다양한 얼굴 작업들이 실생활에도 광범위하게 사용되고 있다. 그러나 모델의 학습에 사용되는 대부분의 얼굴 데이터셋은 사회활동이 활발한 특정 나이에 편중되고, 어린아이나 노인의 데이터가 적은 경향이 있다. 이와 같은 데이터셋 불균형 문제는 모델의 학습에도 좋지 않은 영향을 끼쳐, 아이나 노인같이 데이터가 적은 나이의 사람이 인공지능 모델을 사용할 때 사회활동이 활발한 나이의 사람이 사용할 때보다 성능이 떨어질 수 있고, 이들의 인공지능 모델 사용을 어렵게 할 가능성이 높다. 이를 개선하기 위해 본 논문은 특징 분해를 활용하여 얼굴 영상으로부터 나이를 분류하고 목표 나이로 합성하는 기법을 제안한다. 제안하는 기법은 FFHQ-Aging 데이터셋을 이용한 정량적, 정성적 평가를 통해 기존의 방법보다 더 나은 성능을 보인다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 기법
III. 실험 결과 및 분석
Ⅳ. 결론
참고문헌(References)

참고문헌 (4)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-567-001340981