메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
권지은 (상명대학교) 곽소정 (상명대학교) 임윤아 (상명대학교 감성공학과) 황민철 (상명대학교)
저널정보
한국감성과학회 감성과학 감성과학 제19권 제4호
발행연도
2016.12
수록면
13 - 20 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, life-logging service which has expanded to measure and record the daily life of the users and to share with others are increasing. In particular, as life-logging services based on the application has become popular with the development of wearable-devices and smart-phones, the contents of this service are produced by user behavior and are provided in infographic menu form. The purpose of this paper is to extract user behavior and classify for making contents items of life-logging service. For this paper, the first of all, we discuss the definition and characteristics of life-logging and research the contents based on user behavior related to life-logging by the publications including thesis, articles, and books. Secondly, we extract and classify he user behavior to build the contents for life-logging service. We gather users' action words from publication materials, researches, and contents of existing life-logging service. And then collected words are analyzed by FGI (Focus Group Interview) and survey. As the result, 39 words which suit for contents of life-logging service are extracted by verify suitability. Finally, the extracted 39 words are classified for 19 categories -‘Eat’, ‘Keep house’, ‘Diet’, ‘Travel’, ‘Work out’, ‘Transit’, ‘Shoot’, ‘Meet’, ‘Feel’, ‘Talk’, ‘Care for’, ‘Drive’, ‘Listen’, ‘Go online’, ‘Sleep’, ‘Go’, ‘Work’, ‘Learn’, ‘Watch’ - which are suggested by the surveys, statistical analysis, and FGI . We will discuss the role and limitations of this results to build contents configuration based on life-logging application in this study

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0