메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
부 둑 티엡 (전남대학교) 뉘엔반퀴엣 (전남대학교) 김경백 (전남대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제5권 제2호
발행연도
2016.6
수록면
42 - 50 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In case of a emergency situation or a natural disaster, a warning notification system is an essential tool to notify at-risk people in advance and provide them useful information to survive the event. Although some systems have been proposed such as emergency alert system using android, SMS, or P2P overlay network, these works mainly focus on a reliable message distribution methods. In this paper, we proposed a novel design and implementation of a personalized warning notification system to help inform not only the at-risk people but also their family and friends about the coming disaster as well as escape plan and survival information. The system consists of three main modules: the user selection module, the knowledge based message generator, and message distribution modules. The user selection module collects the list of people involved in the event and sorts them based on their level of involvement (their location, working position and social relationships). The knowledge based message generator provides each person with a personalized message that is concise and contains only the necessary information for the particular person based on their working position and their involvement in the event. The message distribution module will then find a best path for sending the personalized messages based on trustiness of locations since network failures may exist in a disaster event. Additionally, the system also have a comprehensive database and an interactive web interface for both user and system administrator. For evaluation, the system was implemented and demonstrated successfully with a building on fire scenario.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0