메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jih-Jong Lee (National Taiwan University) Han-You Lin (National Taiwan University) Chun-An Chen (National Taiwan University) Chen-Si Lin (National Taiwan University) Lih-Chiann Wang (National Taiwan University)
저널정보
대한수의학회 Journal of Veterinary Science Journal of Veterinary Science 제20권 제1호
발행연도
2019.1
수록면
27 - 33 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Canine MDR1 gene mutations produce translated P-glycoprotein, an active drug efflux transporter, resulting in dysfunction or over-expression. The 4-base deletion at exon 4 of MDR1 at nucleotide position 230 (nt230[del4]) in exon 4 makes P-glycoprotein lose function, leading to drug accumulation and toxicity. The G allele of the c.-6-180T>G variation in intron 1 of MDR1 (single nucleotide polymorphism [SNP] 180) causes P-glycoprotein over-expression, making epileptic dogs resistant to phenobarbital treatment. Both of these mutations are reported to be common in collies. This study develops a more efficient method to detect these two mutations simultaneously, and clarifies the genotype association with the side effects of chemotherapy. Genotype distribution in Taiwan was also investigated. An oligonucleotide microarray was successfully developed for the detection of both genotypes and was applied to clinical samples. No 4-base deletion mutant allele was detected in dogs in Taiwan. However, the G allele variation of SNP 180 was spread across all dog breeds, not only in collies. The chemotherapy adverse effect percentages of the SNP 180 T/T, T/G, and G/G genotypes were 16.7%, 6.3%, and 0%, respectively. This study describes an efficient way for MDR1 gene mutation detection, clarifying genotype distribution, and the association with chemotherapy.

목차

Introduction
Materials and Methods
Results
Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-528-001324280