메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임우상 (공주대학교) 장재영 (공주대학교) 김현일 (공주대학교) 서창호 (공주대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제2호
발행연도
2023.4
수록면
151 - 164 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 양자 컴퓨터의 개발은 현재 사용 중인 이산대수 문제나 인수분해 문제 기반의 공개키 암호에 큰 위협이 되므로, 이에 NIST(National Institute of Standards and Technology)에서는 현재 컴퓨팅 환경 및 도래하는 양자 컴퓨팅 환경에서 모두 구현이 가능한 양자내성암호를 위해 공모전을 진행하고 있다. 이 중 NIST 양자내성암호 공모전 4라운드에 진출한 SIKE(Supersingular Isogeny Key Encapsulation)는 유일한 Isogeny 기반의 암호로써, 동일한 안전성을 갖는 다른 양자내성암호에 비해 짧은 공개키를 갖는 장점이 있다. 그러나, 기존의 암호알고리즘과 마찬가지로, SIKE를 포함한 모든 양자내성암호는 현존하는 암호분석에 반드시 안전해야만 한다. 이에 본 논문에서는 SIKE에 대한 전력 분석 기반 암호분석 기술을 연구하였으며, 특히 웨이블릿 변환 및 딥러닝 기반 클러스터링 전력 분석을 통해 SIKE를 분석하였다. 그 결과, 현존하는 클러스터링 전력 분석 기법의 정확도를 50%내외로 방어하는 마스킹 대응기법이 적용된 SIKE에 대해 100%에 가까운 분석 성공률을 보였으며, 이는 현존하는 SIKE 기법에 대한 가장 강력한 공격임을 확인하였다.

목차

요약
ABSTRACT
I. 서론
II. 배경 지식
III. SIKE에 대한 클러스터링 전력 분석
IV. ECC에 대한 딥러닝 기반 클러스터링 공격
V. 제안하는 SIKE에 대한 딥러닝 기반 클러스터링 공격
VI. 결론
References

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0