메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Atul R Chavan (Shivaji University) Digambar T Shirke (Shivaji University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제27권 제4호
발행연도
2020.7
수록면
397 - 412 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a notion of data depth is used to propose nonparametric multivariate two sample tests for difference between scale parameters. Data depth can be used to measure the centrality or outlying-ness of the multivariate data point relative to data cloud. A difference in the scale parameters indicates the difference in the depth values of a multivariate data point. By observing this fact on a depth vs depth plot (DD-plot), we propose nonparametric multivariate two sample tests for scale parameters of multivariate distributions. The p-values of these proposed tests are obtained by using Fisher’s permutation approach. The power performance of these proposed tests has been reported for few symmetric and skewed multivariate distributions with the existing tests. Illustration with real-life data is also provided.

목차

Abstract
1. Introduction
2. Notion of data depth and DD-plot
3. Data depth based test for multivariate scale difference and Fproduct test
4. Proposed two sample tests
5. Simulation study
6. Application to real-life data
7. Conclusion

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001442069