메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최효정 (중앙대학교) 곽일엽 (중앙대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제34권 제3호
발행연도
2021.6
수록면
449 - 460 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 음성위조공격탐지(Voice spoofing detection) 문제에 데이터 증강을 적용한다. ASV spoof 2017은 리플레이 공격 탐지에 대해 다루며 진짜 사람의 음성과 환경이나 녹음·재생 장치의 조건들을 다르게 하여 위조한 가짜 음성을 분류하는 것을 목적으로 한다. 지금까지 이미지 데이터에 대한 데이터 증강 연구가 활발히 이루어졌으며 음성에도 데이터 증강을 시도하는 여러 연구가 진행되어왔다. 하지만 음성 리플레이 공격에 대한 데이터 증강시도는 이루어지지 않아 본 논문에서는 데이터 증강기법을 통한 오디오 변형이 리플레이 공격 탐지에 어떠한 영향을 미치는지에 대해 탐구해본다. 총 7가지의 데이터 증강기법을 적용해보았으며 그 중 DVC, Pitch 음성 증강기법이 성능향상에 도움되었다. DVC와 Pitch는 기본 모델 EER의 약 8% 개선을 보여주었으며, 특히 DVC는 57개의 환경변수 중 일부 환경에서 눈에 띄는 정확도 향상이 있었다. 가장 큰 폭으로 증가한 RC53의 경우 DVC가 기본 모델 정확도의 약 45% 향상을 이끌어내며 기존에 탐지하기 어려웠던 고사양의 녹음·재생 장치를 잘 구분해냈다. 본 연구를 토대로 기존에 증강기법의 효과에 대한 연구가 이루어지지 않았던 음성 위조 탐지 문제에서 DVC, Pitch 데이터 증강기법이 성능 향상에 도움이 된다는 것을 알아내었다.

목차

Abstract
1. 서론
2. 모형
3. 분석결과
4. 결론 및 시사점
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0