메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고낙경 (부경대학교) 하일도 (부경대학교) 장대흥 (부경대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제33권 제1호
발행연도
2020.2
수록면
107 - 114 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자연 재해로부터 관측되는 자료를 대상으로 재현 수준 예측 등과 같은 자료 분석을 위해 일반화 극단값 분포(generalized extreme value)가 자주 사용되어 왔다. 표본 수가 충분히 큰 경우 연속적인 블록 최댓값들은 점근적으로 일반화 극단값 분포를 따른다. 하지만 소표본인 경우 이러한 사실은 성립되지 않을 수도 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 모형 적합도 검정 및 모형 선택을 통해 로그-로지스틱(log-logistic) 분포의 사용을 제안한다. 하나의 예증으로서 중국 지진 자료를 대상으로 하여 로그-로지스틱 분포를 이용하여 재현 기간별 재현 수준 예측 및 신뢰구간을 제시한다.

목차

Abstract
1. 서론
2. 연구자료 및 기초분석
3. 일반화 극단값 분포와 로그-로지스틱 분포
4. 비교 분석
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001440843