메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Byung Min Soon (Chungnam National University) Su Min Cho (Chungnam National University) Soo Yeon Kwak (Gallup Korea) Dae Ik Kang (Korea Forest Service)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.50 No.1
발행연도
2023.3
수록면
155 - 166 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aimed to analyze management efficiency to increase forestry income and competitiveness. We used the Forestry Household Economy Survey to generate a ratio of input and output. Eight sectors were considered: silviculture/logging, gathering (e.g., pine mushroom), chestnut tree cultivation, astringent persimmon tree cultivation, nut tree cultivation, mushroom cultivation, material for landscape, and other cultivations. Data Envelopment Analysis (DEA) was used to calculate management efficiency for these eight sectors in the forestry market. Moreover, a bootstrap DEA was also used to overcome the sample size and achieve relative efficiency that the normal DEA does not show. We found that silviculture/logging, mushroom cultivation, and material for landscape are relatively efficient sectors among the eight sectors. Bootstrap DEA results show that silviculture/logging is relatively efficient compared to mushroom cultivation and material for landscape. We also used the Forestry Management Survey to compare the results with those of the Forestry Household Economy Survey. The results were not the same except for landscape. The reasons are that input or output data are different in the two surveys and the sample size is not the same in the two surveys. Nevertheless, our study can provide necessary evidence for forestry income improvement and management efficiency.

목차

Abstract
Introduction
Materials and Methods
Results and Discussion
Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0